$$$x^{2} - 8$$$ 的積分
您的輸入
求$$$\int \left(x^{2} - 8\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(x^{2} - 8\right)d x}}} = {\color{red}{\left(- \int{8 d x} + \int{x^{2} d x}\right)}}$$
配合 $$$c=8$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\int{x^{2} d x} - {\color{red}{\int{8 d x}}} = \int{x^{2} d x} - {\color{red}{\left(8 x\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$- 8 x + {\color{red}{\int{x^{2} d x}}}=- 8 x + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 8 x + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{\left(x^{2} - 8\right)d x} = \frac{x^{3}}{3} - 8 x$$
化簡:
$$\int{\left(x^{2} - 8\right)d x} = \frac{x \left(x^{2} - 24\right)}{3}$$
加上積分常數:
$$\int{\left(x^{2} - 8\right)d x} = \frac{x \left(x^{2} - 24\right)}{3}+C$$
答案
$$$\int \left(x^{2} - 8\right)\, dx = \frac{x \left(x^{2} - 24\right)}{3} + C$$$A