$$$\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{\sin^{2}{\left(x \right)} d x} - \int{\cos^{2}{\left(x \right)} d x}\right)}}$$
套用降冪公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,令 $$$\alpha=x$$$:
$$- \int{\cos^{2}{\left(x \right)} d x} + {\color{red}{\int{\sin^{2}{\left(x \right)} d x}}} = - \int{\cos^{2}{\left(x \right)} d x} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = 1 - \cos{\left(2 x \right)}$$$:
$$- \int{\cos^{2}{\left(x \right)} d x} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}} = - \int{\cos^{2}{\left(x \right)} d x} + {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}{2}\right)}}$$
逐項積分:
$$- \int{\cos^{2}{\left(x \right)} d x} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}}}{2} = - \int{\cos^{2}{\left(x \right)} d x} + \frac{{\color{red}{\left(\int{1 d x} - \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{\cos^{2}{\left(x \right)} d x} - \frac{\int{\cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{1 d x}}}}{2} = - \int{\cos^{2}{\left(x \right)} d x} - \frac{\int{\cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{x}}}{2}$$
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
該積分可改寫為
$$\frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
回顧一下 $$$u=2 x$$$:
$$\frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{x}{2} - \int{\cos^{2}{\left(x \right)} d x} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha=x$$$:
$$\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$:
$$\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$
逐項積分:
$$\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{2} = \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{\int{\cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \frac{\int{\cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{x}}}{2}$$
積分 $$$\int{\cos{\left(2 x \right)} d x}$$$ 已經計算過:
$$\int{\cos{\left(2 x \right)} d x} = \frac{\sin{\left(2 x \right)}}{2}$$
因此,
$$- \frac{\sin{\left(2 x \right)}}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = - \frac{\sin{\left(2 x \right)}}{4} - \frac{{\color{red}{\left(\frac{\sin{\left(2 x \right)}}{2}\right)}}}{2}$$
因此,
$$\int{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2}$$
加上積分常數:
$$\int{\left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2}+C$$
答案
$$$\int \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)\, dx = - \frac{\sin{\left(2 x \right)}}{2} + C$$$A