$$$- 8 x + \tan{\left(x \right)} \sec{\left(x \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(- 8 x + \tan{\left(x \right)} \sec{\left(x \right)}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- 8 x + \tan{\left(x \right)} \sec{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{8 x d x} + \int{\tan{\left(x \right)} \sec{\left(x \right)} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=8$$$ 與 $$$f{\left(x \right)} = x$$$:
$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} - {\color{red}{\int{8 x d x}}} = \int{\tan{\left(x \right)} \sec{\left(x \right)} d x} - {\color{red}{\left(8 \int{x d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} - 8 {\color{red}{\int{x d x}}}=\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} - 8 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} - 8 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
$$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ 的積分是 $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:
$$- 4 x^{2} + {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = - 4 x^{2} + {\color{red}{\sec{\left(x \right)}}}$$
因此,
$$\int{\left(- 8 x + \tan{\left(x \right)} \sec{\left(x \right)}\right)d x} = - 4 x^{2} + \sec{\left(x \right)}$$
加上積分常數:
$$\int{\left(- 8 x + \tan{\left(x \right)} \sec{\left(x \right)}\right)d x} = - 4 x^{2} + \sec{\left(x \right)}+C$$
答案
$$$\int \left(- 8 x + \tan{\left(x \right)} \sec{\left(x \right)}\right)\, dx = \left(- 4 x^{2} + \sec{\left(x \right)}\right) + C$$$A