$$$\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$。
解答
令 $$$u=\sin{\left(x \right)}$$$。
則 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(x \right)} dx = du$$$。
該積分變為
$${\color{red}{\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{1}{2}$$$:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
回顧一下 $$$u=\sin{\left(x \right)}$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sin{\left(x \right)}}}^{\frac{3}{2}}}{3}$$
因此,
$$\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3}$$
加上積分常數:
$$\int{\sqrt{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3}+C$$
答案
$$$\int \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = \frac{2 \sin^{\frac{3}{2}}{\left(x \right)}}{3} + C$$$A