$$$\frac{\ln^{2}\left(t\right)}{t}$$$ 的積分
您的輸入
求$$$\int \frac{\ln^{2}\left(t\right)}{t}\, dt$$$。
解答
令 $$$u=\ln{\left(t \right)}$$$。
則 $$$du=\left(\ln{\left(t \right)}\right)^{\prime }dt = \frac{dt}{t}$$$ (步驟見»),並可得 $$$\frac{dt}{t} = du$$$。
因此,
$${\color{red}{\int{\frac{\ln{\left(t \right)}^{2}}{t} d t}}} = {\color{red}{\int{u^{2} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$${\color{red}{\int{u^{2} d u}}}={\color{red}{\frac{u^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
回顧一下 $$$u=\ln{\left(t \right)}$$$:
$$\frac{{\color{red}{u}}^{3}}{3} = \frac{{\color{red}{\ln{\left(t \right)}}}^{3}}{3}$$
因此,
$$\int{\frac{\ln{\left(t \right)}^{2}}{t} d t} = \frac{\ln{\left(t \right)}^{3}}{3}$$
加上積分常數:
$$\int{\frac{\ln{\left(t \right)}^{2}}{t} d t} = \frac{\ln{\left(t \right)}^{3}}{3}+C$$
答案
$$$\int \frac{\ln^{2}\left(t\right)}{t}\, dt = \frac{\ln^{3}\left(t\right)}{3} + C$$$A