$$$\left(4 x - 2\right) e^{x^{2} - x}$$$ 的積分
您的輸入
求$$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx$$$。
解答
已將輸入重寫為:$$$\int{\left(4 x - 2\right) e^{x^{2} - x} d x}=\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}$$$。
令 $$$u=x \left(x - 1\right)$$$。
則 $$$du=\left(x \left(x - 1\right)\right)^{\prime }dx = \left(2 x - 1\right) dx$$$ (步驟見»),並可得 $$$\left(2 x - 1\right) dx = du$$$。
因此,
$${\color{red}{\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}}} = {\color{red}{\int{2 e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{2 e^{u} d u}}} = {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$
回顧一下 $$$u=x \left(x - 1\right)$$$:
$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{x \left(x - 1\right)}}}$$
因此,
$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}$$
加上積分常數:
$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}+C$$
答案
$$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx = 2 e^{x \left(x - 1\right)} + C$$$A