$$$\frac{1}{8 x - 3}$$$ 的積分
您的輸入
求$$$\int \frac{1}{8 x - 3}\, dx$$$。
解答
令 $$$u=8 x - 3$$$。
則 $$$du=\left(8 x - 3\right)^{\prime }dx = 8 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{8}$$$。
因此,
$${\color{red}{\int{\frac{1}{8 x - 3} d x}}} = {\color{red}{\int{\frac{1}{8 u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{8}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{8 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{8}\right)}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
回顧一下 $$$u=8 x - 3$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = \frac{\ln{\left(\left|{{\color{red}{\left(8 x - 3\right)}}}\right| \right)}}{8}$$
因此,
$$\int{\frac{1}{8 x - 3} d x} = \frac{\ln{\left(\left|{8 x - 3}\right| \right)}}{8}$$
加上積分常數:
$$\int{\frac{1}{8 x - 3} d x} = \frac{\ln{\left(\left|{8 x - 3}\right| \right)}}{8}+C$$
答案
$$$\int \frac{1}{8 x - 3}\, dx = \frac{\ln\left(\left|{8 x - 3}\right|\right)}{8} + C$$$A