$$$\cot^{2}{\left(2 x \right)}$$$ 的積分
您的輸入
求$$$\int \cot^{2}{\left(2 x \right)}\, dx$$$。
解答
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
該積分變為
$${\color{red}{\int{\cot^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cot^{2}{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \cot^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cot^{2}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\cot^{2}{\left(u \right)} d u}}{2}\right)}}$$
令 $$$v=\cot{\left(u \right)}$$$。
則 $$$dv=\left(\cot{\left(u \right)}\right)^{\prime }du = - \csc^{2}{\left(u \right)} du$$$ (步驟見»),並可得 $$$\csc^{2}{\left(u \right)} du = - dv$$$。
所以,
$$\frac{{\color{red}{\int{\cot^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{v^{2}}{v^{2} + 1}\right)d v}}}}{2}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-1$$$ 與 $$$f{\left(v \right)} = \frac{v^{2}}{v^{2} + 1}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{v^{2}}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{v^{2}}{v^{2} + 1} d v}\right)}}}{2}$$
重寫並拆分分式:
$$- \frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2} = - \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$
逐項積分:
$$- \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2} = - \frac{{\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$:
$$\frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{\int{1 d v}}}}{2} = \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} - \frac{{\color{red}{v}}}{2}$$
$$$\frac{1}{v^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$- \frac{v}{2} + \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = - \frac{v}{2} + \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$
回顧一下 $$$v=\cot{\left(u \right)}$$$:
$$\frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} - \frac{{\color{red}{v}}}{2} = \frac{\operatorname{atan}{\left({\color{red}{\cot{\left(u \right)}}} \right)}}{2} - \frac{{\color{red}{\cot{\left(u \right)}}}}{2}$$
回顧一下 $$$u=2 x$$$:
$$- \frac{\cot{\left({\color{red}{u}} \right)}}{2} + \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{u}} \right)} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(2 x\right)}} \right)}}{2} + \frac{\operatorname{atan}{\left(\cot{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$
因此,
$$\int{\cot^{2}{\left(2 x \right)} d x} = - \frac{\cot{\left(2 x \right)}}{2} + \frac{\operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}$$
化簡:
$$\int{\cot^{2}{\left(2 x \right)} d x} = \frac{- \cot{\left(2 x \right)} + \operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}$$
加上積分常數:
$$\int{\cot^{2}{\left(2 x \right)} d x} = \frac{- \cot{\left(2 x \right)} + \operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2}+C$$
答案
$$$\int \cot^{2}{\left(2 x \right)}\, dx = \frac{- \cot{\left(2 x \right)} + \operatorname{atan}{\left(\cot{\left(2 x \right)} \right)}}{2} + C$$$A