$$$\sqrt{b^{2} - x^{2}}$$$$$$x$$$ 的積分

此計算器會求出 $$$\sqrt{b^{2} - x^{2}}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sqrt{b^{2} - x^{2}}\, dx$$$

解答

$$$x=\sin{\left(u \right)} \left|{b}\right|$$$

$$$dx=\left(\sin{\left(u \right)} \left|{b}\right|\right)^{\prime }du = \cos{\left(u \right)} \left|{b}\right| du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}$$$

因此,

$$$\sqrt{b^{2} - x^{2}} = \sqrt{- b^{2} \sin^{2}{\left( u \right)} + b^{2}}$$$

使用恆等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$

$$$\sqrt{- b^{2} \sin^{2}{\left( u \right)} + b^{2}}=\sqrt{1 - \sin^{2}{\left( u \right)}} \left|{b}\right|=\sqrt{\cos^{2}{\left( u \right)}} \left|{b}\right|$$$

假設 $$$\cos{\left( u \right)} \ge 0$$$,可得如下:

$$$\sqrt{\cos^{2}{\left( u \right)}} \left|{b}\right| = \cos{\left( u \right)} \left|{b}\right|$$$

所以,

$${\color{red}{\int{\sqrt{b^{2} - x^{2}} d x}}} = {\color{red}{\int{b^{2} \cos^{2}{\left(u \right)} d u}}}$$

套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha= u $$$:

$${\color{red}{\int{b^{2} \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{b^{2} \left(\cos{\left(2 u \right)} + 1\right)}{2} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = b^{2} \left(\cos{\left(2 u \right)} + 1\right)$$$

$${\color{red}{\int{\frac{b^{2} \left(\cos{\left(2 u \right)} + 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{b^{2} \left(\cos{\left(2 u \right)} + 1\right) d u}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{b^{2} \left(\cos{\left(2 u \right)} + 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(b^{2} \cos{\left(2 u \right)} + b^{2}\right)d u}}}}{2}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(b^{2} \cos{\left(2 u \right)} + b^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{b^{2} d u} + \int{b^{2} \cos{\left(2 u \right)} d u}\right)}}}{2}$$

配合 $$$c=b^{2}$$$,應用常數法則 $$$\int c\, du = c u$$$

$$\frac{\int{b^{2} \cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{\int{b^{2} d u}}}}{2} = \frac{\int{b^{2} \cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{b^{2} u}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=b^{2}$$$$$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$

$$\frac{b^{2} u}{2} + \frac{{\color{red}{\int{b^{2} \cos{\left(2 u \right)} d u}}}}{2} = \frac{b^{2} u}{2} + \frac{{\color{red}{b^{2} \int{\cos{\left(2 u \right)} d u}}}}{2}$$

$$$v=2 u$$$

$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{2}$$$

該積分可改寫為

$$\frac{b^{2} u}{2} + \frac{b^{2} {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{b^{2} u}{2} + \frac{b^{2} {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$

$$\frac{b^{2} u}{2} + \frac{b^{2} {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{b^{2} u}{2} + \frac{b^{2} {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$

餘弦函數的積分為 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$

$$\frac{b^{2} u}{2} + \frac{b^{2} {\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{b^{2} u}{2} + \frac{b^{2} {\color{red}{\sin{\left(v \right)}}}}{4}$$

回顧一下 $$$v=2 u$$$

$$\frac{b^{2} u}{2} + \frac{b^{2} \sin{\left({\color{red}{v}} \right)}}{4} = \frac{b^{2} u}{2} + \frac{b^{2} \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$

回顧一下 $$$u=\operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}$$$

$$\frac{b^{2} \sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{b^{2} {\color{red}{u}}}{2} = \frac{b^{2} \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}} \right)}}{4} + \frac{b^{2} {\color{red}{\operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}}}{2}$$

因此,

$$\int{\sqrt{b^{2} - x^{2}} d x} = \frac{b^{2} \sin{\left(2 \operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)} \right)}}{4} + \frac{b^{2} \operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}{2}$$

使用公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$,化簡該表達式:

$$\int{\sqrt{b^{2} - x^{2}} d x} = \frac{b^{2} x \sqrt{- \frac{x^{2}}{\left|{b}\right|^{2}} + 1}}{2 \left|{b}\right|} + \frac{b^{2} \operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}{2}$$

進一步化簡:

$$\int{\sqrt{b^{2} - x^{2}} d x} = \frac{b^{2} \operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}{2} + \frac{x \sqrt{b^{2} - x^{2}}}{2}$$

加上積分常數:

$$\int{\sqrt{b^{2} - x^{2}} d x} = \frac{b^{2} \operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}{2} + \frac{x \sqrt{b^{2} - x^{2}}}{2}+C$$

答案

$$$\int \sqrt{b^{2} - x^{2}}\, dx = \left(\frac{b^{2} \operatorname{asin}{\left(\frac{x}{\left|{b}\right|} \right)}}{2} + \frac{x \sqrt{b^{2} - x^{2}}}{2}\right) + C$$$A


Please try a new game Rotatly