$$$\sqrt{a^{2} - x^{2}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \sqrt{a^{2} - x^{2}}\, dx$$$。
解答
令 $$$x=\sin{\left(u \right)} \left|{a}\right|$$$。
則 $$$dx=\left(\sin{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \cos{\left(u \right)} \left|{a}\right| du$$$(步驟見»)。
此外,由此可得 $$$u=\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}$$$。
因此,
$$$\sqrt{a^{2} - x^{2}} = \sqrt{- a^{2} \sin^{2}{\left( u \right)} + a^{2}}$$$
使用恆等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\sqrt{- a^{2} \sin^{2}{\left( u \right)} + a^{2}}=\sqrt{1 - \sin^{2}{\left( u \right)}} \left|{a}\right|=\sqrt{\cos^{2}{\left( u \right)}} \left|{a}\right|$$$
假設 $$$\cos{\left( u \right)} \ge 0$$$,可得如下:
$$$\sqrt{\cos^{2}{\left( u \right)}} \left|{a}\right| = \cos{\left( u \right)} \left|{a}\right|$$$
所以,
$${\color{red}{\int{\sqrt{a^{2} - x^{2}} d x}}} = {\color{red}{\int{a^{2} \cos^{2}{\left(u \right)} d u}}}$$
套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha= u $$$:
$${\color{red}{\int{a^{2} \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{a^{2} \left(\cos{\left(2 u \right)} + 1\right)}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = a^{2} \left(\cos{\left(2 u \right)} + 1\right)$$$:
$${\color{red}{\int{\frac{a^{2} \left(\cos{\left(2 u \right)} + 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cos{\left(2 u \right)} + 1\right) d u}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{a^{2} \left(\cos{\left(2 u \right)} + 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cos{\left(2 u \right)} + a^{2}\right)d u}}}}{2}$$
逐項積分:
$$\frac{{\color{red}{\int{\left(a^{2} \cos{\left(2 u \right)} + a^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{a^{2} d u} + \int{a^{2} \cos{\left(2 u \right)} d u}\right)}}}{2}$$
配合 $$$c=a^{2}$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$\frac{\int{a^{2} \cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{\int{a^{2} d u}}}}{2} = \frac{\int{a^{2} \cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{a^{2} u}}}{2}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=a^{2}$$$ 與 $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$:
$$\frac{a^{2} u}{2} + \frac{{\color{red}{\int{a^{2} \cos{\left(2 u \right)} d u}}}}{2} = \frac{a^{2} u}{2} + \frac{{\color{red}{a^{2} \int{\cos{\left(2 u \right)} d u}}}}{2}$$
令 $$$v=2 u$$$。
則 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{2}$$$。
因此,
$$\frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$
餘弦函數的積分為 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\sin{\left(v \right)}}}}{4}$$
回顧一下 $$$v=2 u$$$:
$$\frac{a^{2} u}{2} + \frac{a^{2} \sin{\left({\color{red}{v}} \right)}}{4} = \frac{a^{2} u}{2} + \frac{a^{2} \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
回顧一下 $$$u=\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$$\frac{a^{2} \sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{a^{2} {\color{red}{u}}}{2} = \frac{a^{2} \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)}}{4} + \frac{a^{2} {\color{red}{\operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}}}{2}$$
因此,
$$\int{\sqrt{a^{2} - x^{2}} d x} = \frac{a^{2} \sin{\left(2 \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)} \right)}}{4} + \frac{a^{2} \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
使用公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$,化簡該表達式:
$$\int{\sqrt{a^{2} - x^{2}} d x} = \frac{a^{2} x \sqrt{- \frac{x^{2}}{\left|{a}\right|^{2}} + 1}}{2 \left|{a}\right|} + \frac{a^{2} \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
進一步化簡:
$$\int{\sqrt{a^{2} - x^{2}} d x} = \frac{a^{2} \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}{2} + \frac{x \sqrt{a^{2} - x^{2}}}{2}$$
加上積分常數:
$$\int{\sqrt{a^{2} - x^{2}} d x} = \frac{a^{2} \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}{2} + \frac{x \sqrt{a^{2} - x^{2}}}{2}+C$$
答案
$$$\int \sqrt{a^{2} - x^{2}}\, dx = \left(\frac{a^{2} \operatorname{asin}{\left(\frac{x}{\left|{a}\right|} \right)}}{2} + \frac{x \sqrt{a^{2} - x^{2}}}{2}\right) + C$$$A