$$$\frac{6 x^{2} - 1}{x^{2}}$$$ 的積分

此計算器將求出 $$$\frac{6 x^{2} - 1}{x^{2}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{6 x^{2} - 1}{x^{2}}\, dx$$$

解答

Expand the expression:

$${\color{red}{\int{\frac{6 x^{2} - 1}{x^{2}} d x}}} = {\color{red}{\int{\left(6 - \frac{1}{x^{2}}\right)d x}}}$$

逐項積分:

$${\color{red}{\int{\left(6 - \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(\int{6 d x} - \int{\frac{1}{x^{2}} d x}\right)}}$$

配合 $$$c=6$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$- \int{\frac{1}{x^{2}} d x} + {\color{red}{\int{6 d x}}} = - \int{\frac{1}{x^{2}} d x} + {\color{red}{\left(6 x\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$6 x - {\color{red}{\int{\frac{1}{x^{2}} d x}}}=6 x - {\color{red}{\int{x^{-2} d x}}}=6 x - {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=6 x - {\color{red}{\left(- x^{-1}\right)}}=6 x - {\color{red}{\left(- \frac{1}{x}\right)}}$$

因此,

$$\int{\frac{6 x^{2} - 1}{x^{2}} d x} = 6 x + \frac{1}{x}$$

加上積分常數:

$$\int{\frac{6 x^{2} - 1}{x^{2}} d x} = 6 x + \frac{1}{x}+C$$

答案

$$$\int \frac{6 x^{2} - 1}{x^{2}}\, dx = \left(6 x + \frac{1}{x}\right) + C$$$A


Please try a new game Rotatly