$$$\frac{5}{\sqrt{9 - 4 x^{2}}}$$$ 的積分

此計算器將求出 $$$\frac{5}{\sqrt{9 - 4 x^{2}}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=5$$$$$$f{\left(x \right)} = \frac{1}{\sqrt{9 - 4 x^{2}}}$$$

$${\color{red}{\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}\right)}}$$

$$$x=\frac{3 \sin{\left(u \right)}}{2}$$$

$$$dx=\left(\frac{3 \sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{3 \cos{\left(u \right)}}{2} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$

因此,

$$$\frac{1}{\sqrt{9 - 4 x^{2}}} = \frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}$$$

使用恆等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$

$$$\frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}}$$$

假設 $$$\cos{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{3 \cos{\left( u \right)}}$$$

積分變為

$$5 {\color{red}{\int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}}} = 5 {\color{red}{\int{\frac{1}{2} d u}}}$$

配合 $$$c=\frac{1}{2}$$$,應用常數法則 $$$\int c\, du = c u$$$

$$5 {\color{red}{\int{\frac{1}{2} d u}}} = 5 {\color{red}{\left(\frac{u}{2}\right)}}$$

回顧一下 $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$

$$\frac{5 {\color{red}{u}}}{2} = \frac{5 {\color{red}{\operatorname{asin}{\left(\frac{2 x}{3} \right)}}}}{2}$$

因此,

$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}$$

加上積分常數:

$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}+C$$

答案

$$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2} + C$$$A


Please try a new game Rotatly