$$$12 x^{6}$$$ 的積分
您的輸入
求$$$\int 12 x^{6}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=12$$$ 與 $$$f{\left(x \right)} = x^{6}$$$:
$${\color{red}{\int{12 x^{6} d x}}} = {\color{red}{\left(12 \int{x^{6} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=6$$$:
$$12 {\color{red}{\int{x^{6} d x}}}=12 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=12 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
因此,
$$\int{12 x^{6} d x} = \frac{12 x^{7}}{7}$$
加上積分常數:
$$\int{12 x^{6} d x} = \frac{12 x^{7}}{7}+C$$
答案
$$$\int 12 x^{6}\, dx = \frac{12 x^{7}}{7} + C$$$A
Please try a new game Rotatly