$$$\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}$$$ 的積分
您的輸入
求$$$\int \frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}\, dx$$$。
解答
令 $$$u=x^{3}$$$。
則 $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (步驟見»),並可得 $$$x^{2} dx = \frac{du}{3}$$$。
所以,
$${\color{red}{\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x}}} = {\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}}$$
令 $$$v=\frac{1}{u}$$$。
則 $$$dv=\left(\frac{1}{u}\right)^{\prime }du = - \frac{1}{u^{2}} du$$$ (步驟見»),並可得 $$$\frac{du}{u^{2}} = - dv$$$。
因此,
$${\color{red}{\int{\frac{e^{\frac{1}{u}}}{u^{2}} d u}}} = {\color{red}{\int{\left(- e^{v}\right)d v}}}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-1$$$ 與 $$$f{\left(v \right)} = e^{v}$$$:
$${\color{red}{\int{\left(- e^{v}\right)d v}}} = {\color{red}{\left(- \int{e^{v} d v}\right)}}$$
指數函數的積分為 $$$\int{e^{v} d v} = e^{v}$$$:
$$- {\color{red}{\int{e^{v} d v}}} = - {\color{red}{e^{v}}}$$
回顧一下 $$$v=\frac{1}{u}$$$:
$$- e^{{\color{red}{v}}} = - e^{{\color{red}{\frac{1}{u}}}}$$
回顧一下 $$$u=x^{3}$$$:
$$- e^{{\color{red}{u}}^{-1}} = - e^{{\color{red}{x^{3}}}^{-1}}$$
因此,
$$\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - e^{\frac{1}{x^{3}}}$$
加上積分常數:
$$\int{\frac{3 e^{\frac{1}{x^{3}}}}{x^{4}} d x} = - e^{\frac{1}{x^{3}}}+C$$
答案
$$$\int \frac{3 e^{\frac{1}{x^{3}}}}{x^{4}}\, dx = - e^{\frac{1}{x^{3}}} + C$$$A