$$$\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$$。
解答
Expand the expression:
$${\color{red}{\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2}{\cos^{2}{\left(x \right)}}\right)d x}}}$$
逐項積分:
$${\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2}{\cos^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + \int{\frac{2}{\cos^{2}{\left(x \right)}} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}$$$:
$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + {\color{red}{\int{\frac{2}{\cos^{2}{\left(x \right)}} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + {\color{red}{\left(2 \int{\frac{1}{\cos^{2}{\left(x \right)}} d x}\right)}}$$
將被積函數以正割表示:
$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$
$$$\sec^{2}{\left(x \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\tan{\left(x \right)}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=3$$$ 與 $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$:
$$2 \tan{\left(x \right)} - {\color{red}{\int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \tan{\left(x \right)} - {\color{red}{\left(3 \int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}\right)}}$$
令 $$$u=\cos{\left(x \right)}$$$。
則 $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sin{\left(x \right)} dx = - du$$$。
因此,
$$2 \tan{\left(x \right)} - 3 {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \tan{\left(x \right)} - 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$$2 \tan{\left(x \right)} - 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 2 \tan{\left(x \right)} - 3 {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$2 \tan{\left(x \right)} + 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\int{u^{-2} d u}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\left(- u^{-1}\right)}}=2 \tan{\left(x \right)} + 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$
回顧一下 $$$u=\cos{\left(x \right)}$$$:
$$2 \tan{\left(x \right)} - 3 {\color{red}{u}}^{-1} = 2 \tan{\left(x \right)} - 3 {\color{red}{\cos{\left(x \right)}}}^{-1}$$
因此,
$$\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} = 2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}$$
加上積分常數:
$$\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} = 2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}+C$$
答案
$$$\int \frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx = \left(2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}\right) + C$$$A