$$$\frac{2}{3 x^{4}}$$$ 的積分
您的輸入
求$$$\int \frac{2}{3 x^{4}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{2}{3}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{4}}$$$:
$${\color{red}{\int{\frac{2}{3 x^{4}} d x}}} = {\color{red}{\left(\frac{2 \int{\frac{1}{x^{4}} d x}}{3}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-4$$$:
$$\frac{2 {\color{red}{\int{\frac{1}{x^{4}} d x}}}}{3}=\frac{2 {\color{red}{\int{x^{-4} d x}}}}{3}=\frac{2 {\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}}{3}=\frac{2 {\color{red}{\left(- \frac{x^{-3}}{3}\right)}}}{3}=\frac{2 {\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}}{3}$$
因此,
$$\int{\frac{2}{3 x^{4}} d x} = - \frac{2}{9 x^{3}}$$
加上積分常數:
$$\int{\frac{2}{3 x^{4}} d x} = - \frac{2}{9 x^{3}}+C$$
答案
$$$\int \frac{2}{3 x^{4}}\, dx = - \frac{2}{9 x^{3}} + C$$$A