$$$\frac{\cos{\left(4 t \right)}}{2}$$$ 的積分

此計算器將求出 $$$\frac{\cos{\left(4 t \right)}}{2}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\cos{\left(4 t \right)}}{2}\, dt$$$

解答

套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \cos{\left(4 t \right)}$$$

$${\color{red}{\int{\frac{\cos{\left(4 t \right)}}{2} d t}}} = {\color{red}{\left(\frac{\int{\cos{\left(4 t \right)} d t}}{2}\right)}}$$

$$$u=4 t$$$

$$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{4}$$$

因此,

$$\frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{2} = \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$\frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$

回顧一下 $$$u=4 t$$$

$$\frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{8}$$

因此,

$$\int{\frac{\cos{\left(4 t \right)}}{2} d t} = \frac{\sin{\left(4 t \right)}}{8}$$

加上積分常數:

$$\int{\frac{\cos{\left(4 t \right)}}{2} d t} = \frac{\sin{\left(4 t \right)}}{8}+C$$

答案

$$$\int \frac{\cos{\left(4 t \right)}}{2}\, dt = \frac{\sin{\left(4 t \right)}}{8} + C$$$A


Please try a new game Rotatly