$$$\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}$$$ 的積分

此計算器將求出 $$$\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)\, dt$$$

解答

逐項積分:

$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t}}} = {\color{red}{\left(\int{\frac{1}{2} d t} - \int{\frac{\cos{\left(6 t \right)}}{2} d t}\right)}}$$

配合 $$$c=\frac{1}{2}$$$,應用常數法則 $$$\int c\, dt = c t$$$

$$- \int{\frac{\cos{\left(6 t \right)}}{2} d t} + {\color{red}{\int{\frac{1}{2} d t}}} = - \int{\frac{\cos{\left(6 t \right)}}{2} d t} + {\color{red}{\left(\frac{t}{2}\right)}}$$

套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \cos{\left(6 t \right)}$$$

$$\frac{t}{2} - {\color{red}{\int{\frac{\cos{\left(6 t \right)}}{2} d t}}} = \frac{t}{2} - {\color{red}{\left(\frac{\int{\cos{\left(6 t \right)} d t}}{2}\right)}}$$

$$$u=6 t$$$

$$$du=\left(6 t\right)^{\prime }dt = 6 dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{6}$$$

該積分變為

$$\frac{t}{2} - \frac{{\color{red}{\int{\cos{\left(6 t \right)} d t}}}}{2} = \frac{t}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{6}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$\frac{t}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{2} = \frac{t}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{2}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{t}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{12} = \frac{t}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{12}$$

回顧一下 $$$u=6 t$$$

$$\frac{t}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{12} = \frac{t}{2} - \frac{\sin{\left({\color{red}{\left(6 t\right)}} \right)}}{12}$$

因此,

$$\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t} = \frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}$$

加上積分常數:

$$\int{\left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)d t} = \frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}+C$$

答案

$$$\int \left(\frac{1}{2} - \frac{\cos{\left(6 t \right)}}{2}\right)\, dt = \left(\frac{t}{2} - \frac{\sin{\left(6 t \right)}}{12}\right) + C$$$A


Please try a new game Rotatly