$$$\frac{1}{p \left(1 - \frac{p}{n}\right)}$$$$$$n$$$ 的積分

此計算器會求出 $$$\frac{1}{p \left(1 - \frac{p}{n}\right)}$$$$$$n$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn$$$

解答

套用常數倍法則 $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$,使用 $$$c=\frac{1}{p}$$$$$$f{\left(n \right)} = \frac{1}{1 - \frac{p}{n}}$$$

$${\color{red}{\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n}}} = {\color{red}{\frac{\int{\frac{1}{1 - \frac{p}{n}} d n}}{p}}}$$

Simplify:

$$\frac{{\color{red}{\int{\frac{1}{1 - \frac{p}{n}} d n}}}}{p} = \frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p}$$

重寫並拆分分式:

$$\frac{{\color{red}{\int{\frac{n}{n - p} d n}}}}{p} = \frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(\frac{p}{n - p} + 1\right)d n}}}}{p} = \frac{{\color{red}{\left(\int{1 d n} + \int{\frac{p}{n - p} d n}\right)}}}{p}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dn = c n$$$

$$\frac{\int{\frac{p}{n - p} d n} + {\color{red}{\int{1 d n}}}}{p} = \frac{\int{\frac{p}{n - p} d n} + {\color{red}{n}}}{p}$$

套用常數倍法則 $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$,使用 $$$c=p$$$$$$f{\left(n \right)} = \frac{1}{n - p}$$$

$$\frac{n + {\color{red}{\int{\frac{p}{n - p} d n}}}}{p} = \frac{n + {\color{red}{p \int{\frac{1}{n - p} d n}}}}{p}$$

$$$u=n - p$$$

$$$du=\left(n - p\right)^{\prime }dn = 1 dn$$$ (步驟見»),並可得 $$$dn = du$$$

因此,

$$\frac{n + p {\color{red}{\int{\frac{1}{n - p} d n}}}}{p} = \frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$\frac{n + p {\color{red}{\int{\frac{1}{u} d u}}}}{p} = \frac{n + p {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{p}$$

回顧一下 $$$u=n - p$$$

$$\frac{n + p \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{p} = \frac{n + p \ln{\left(\left|{{\color{red}{\left(n - p\right)}}}\right| \right)}}{p}$$

因此,

$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n + p \ln{\left(\left|{n - p}\right| \right)}}{p}$$

化簡:

$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}$$

加上積分常數:

$$\int{\frac{1}{p \left(1 - \frac{p}{n}\right)} d n} = \frac{n}{p} + \ln{\left(\left|{n - p}\right| \right)}+C$$

答案

$$$\int \frac{1}{p \left(1 - \frac{p}{n}\right)}\, dn = \left(\frac{n}{p} + \ln\left(\left|{n - p}\right|\right)\right) + C$$$A


Please try a new game Rotatly