$$$\left(\frac{x}{8} - 2\right)^{3}$$$ 的積分
您的輸入
求$$$\int \left(\frac{x}{8} - 2\right)^{3}\, dx$$$。
解答
令 $$$u=\frac{x}{8} - 2$$$。
則 $$$du=\left(\frac{x}{8} - 2\right)^{\prime }dx = \frac{dx}{8}$$$ (步驟見»),並可得 $$$dx = 8 du$$$。
因此,
$${\color{red}{\int{\left(\frac{x}{8} - 2\right)^{3} d x}}} = {\color{red}{\int{8 u^{3} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=8$$$ 與 $$$f{\left(u \right)} = u^{3}$$$:
$${\color{red}{\int{8 u^{3} d u}}} = {\color{red}{\left(8 \int{u^{3} d u}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=3$$$:
$$8 {\color{red}{\int{u^{3} d u}}}=8 {\color{red}{\frac{u^{1 + 3}}{1 + 3}}}=8 {\color{red}{\left(\frac{u^{4}}{4}\right)}}$$
回顧一下 $$$u=\frac{x}{8} - 2$$$:
$$2 {\color{red}{u}}^{4} = 2 {\color{red}{\left(\frac{x}{8} - 2\right)}}^{4}$$
因此,
$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = 2 \left(\frac{x}{8} - 2\right)^{4}$$
化簡:
$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = \frac{\left(x - 16\right)^{4}}{2048}$$
加上積分常數:
$$\int{\left(\frac{x}{8} - 2\right)^{3} d x} = \frac{\left(x - 16\right)^{4}}{2048}+C$$
答案
$$$\int \left(\frac{x}{8} - 2\right)^{3}\, dx = \frac{\left(x - 16\right)^{4}}{2048} + C$$$A