$$$x^{2} \sin{\left(x^{3} \right)}$$$ 的積分
您的輸入
求$$$\int x^{2} \sin{\left(x^{3} \right)}\, dx$$$。
解答
令 $$$u=x^{3}$$$。
則 $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (步驟見»),並可得 $$$x^{2} dx = \frac{du}{3}$$$。
該積分變為
$${\color{red}{\int{x^{2} \sin{\left(x^{3} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{3}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{3}$$
回顧一下 $$$u=x^{3}$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{3} = - \frac{\cos{\left({\color{red}{x^{3}}} \right)}}{3}$$
因此,
$$\int{x^{2} \sin{\left(x^{3} \right)} d x} = - \frac{\cos{\left(x^{3} \right)}}{3}$$
加上積分常數:
$$\int{x^{2} \sin{\left(x^{3} \right)} d x} = - \frac{\cos{\left(x^{3} \right)}}{3}+C$$
答案
$$$\int x^{2} \sin{\left(x^{3} \right)}\, dx = - \frac{\cos{\left(x^{3} \right)}}{3} + C$$$A