$$$\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}}\, dx$$$。
解答
令 $$$u=\frac{1}{x}$$$。
則 $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{x^{2}} = - du$$$。
所以,
$${\color{red}{\int{\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}} d x}}} = {\color{red}{\int{\left(- \tan{\left(u \right)}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \tan{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \tan{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\tan{\left(u \right)} d u}\right)}}$$
將切線改寫為 $$$\tan\left( u \right)=\frac{\sin\left( u \right)}{\cos\left( u \right)}$$$:
$$- {\color{red}{\int{\tan{\left(u \right)} d u}}} = - {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}$$
令 $$$v=\cos{\left(u \right)}$$$。
則 $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (步驟見»),並可得 $$$\sin{\left(u \right)} du = - dv$$$。
該積分變為
$$- {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}} = - {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-1$$$ 與 $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$- {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}} = - {\color{red}{\left(- \int{\frac{1}{v} d v}\right)}}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{v} d v}}} = {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
回顧一下 $$$v=\cos{\left(u \right)}$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\cos{\left(u \right)}}}}\right| \right)}$$
回顧一下 $$$u=\frac{1}{x}$$$:
$$\ln{\left(\left|{\cos{\left({\color{red}{u}} \right)}}\right| \right)} = \ln{\left(\left|{\cos{\left({\color{red}{\frac{1}{x}}} \right)}}\right| \right)}$$
因此,
$$\int{\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}} d x} = \ln{\left(\left|{\cos{\left(\frac{1}{x} \right)}}\right| \right)}$$
加上積分常數:
$$\int{\frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}} d x} = \ln{\left(\left|{\cos{\left(\frac{1}{x} \right)}}\right| \right)}+C$$
答案
$$$\int \frac{\tan{\left(\frac{1}{x} \right)}}{x^{2}}\, dx = \ln\left(\left|{\cos{\left(\frac{1}{x} \right)}}\right|\right) + C$$$A