$$$4 \sqrt{x} - \frac{4}{\sqrt{x}}$$$ 的積分
您的輸入
求$$$\int \left(4 \sqrt{x} - \frac{4}{\sqrt{x}}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(4 \sqrt{x} - \frac{4}{\sqrt{x}}\right)d x}}} = {\color{red}{\left(- \int{\frac{4}{\sqrt{x}} d x} + \int{4 \sqrt{x} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$ 與 $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:
$$\int{4 \sqrt{x} d x} - {\color{red}{\int{\frac{4}{\sqrt{x}} d x}}} = \int{4 \sqrt{x} d x} - {\color{red}{\left(4 \int{\frac{1}{\sqrt{x}} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{1}{2}$$$:
$$\int{4 \sqrt{x} d x} - 4 {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}=\int{4 \sqrt{x} d x} - 4 {\color{red}{\int{x^{- \frac{1}{2}} d x}}}=\int{4 \sqrt{x} d x} - 4 {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\int{4 \sqrt{x} d x} - 4 {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}=\int{4 \sqrt{x} d x} - 4 {\color{red}{\left(2 \sqrt{x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$ 與 $$$f{\left(x \right)} = \sqrt{x}$$$:
$$- 8 \sqrt{x} + {\color{red}{\int{4 \sqrt{x} d x}}} = - 8 \sqrt{x} + {\color{red}{\left(4 \int{\sqrt{x} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{1}{2}$$$:
$$- 8 \sqrt{x} + 4 {\color{red}{\int{\sqrt{x} d x}}}=- 8 \sqrt{x} + 4 {\color{red}{\int{x^{\frac{1}{2}} d x}}}=- 8 \sqrt{x} + 4 {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- 8 \sqrt{x} + 4 {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$
因此,
$$\int{\left(4 \sqrt{x} - \frac{4}{\sqrt{x}}\right)d x} = \frac{8 x^{\frac{3}{2}}}{3} - 8 \sqrt{x}$$
化簡:
$$\int{\left(4 \sqrt{x} - \frac{4}{\sqrt{x}}\right)d x} = \frac{8 \sqrt{x} \left(x - 3\right)}{3}$$
加上積分常數:
$$\int{\left(4 \sqrt{x} - \frac{4}{\sqrt{x}}\right)d x} = \frac{8 \sqrt{x} \left(x - 3\right)}{3}+C$$
答案
$$$\int \left(4 \sqrt{x} - \frac{4}{\sqrt{x}}\right)\, dx = \frac{8 \sqrt{x} \left(x - 3\right)}{3} + C$$$A