$$$\frac{1}{- c + c_{max}}$$$ 對 $$$c$$$ 的積分
您的輸入
求$$$\int \frac{1}{- c + c_{max}}\, dc$$$。
解答
令 $$$u=- c + c_{max}$$$。
則 $$$du=\left(- c + c_{max}\right)^{\prime }dc = - dc$$$ (步驟見»),並可得 $$$dc = - du$$$。
因此,
$${\color{red}{\int{\frac{1}{- c + c_{max}} d c}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=- c + c_{max}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\left(- c + c_{max}\right)}}}\right| \right)}$$
因此,
$$\int{\frac{1}{- c + c_{max}} d c} = - \ln{\left(\left|{c - c_{max}}\right| \right)}$$
加上積分常數:
$$\int{\frac{1}{- c + c_{max}} d c} = - \ln{\left(\left|{c - c_{max}}\right| \right)}+C$$
答案
$$$\int \frac{1}{- c + c_{max}}\, dc = - \ln\left(\left|{c - c_{max}}\right|\right) + C$$$A