$$$\sqrt{32 + 4 \sqrt{17} i}$$$

此計算器會求出複數 $$$32 + 4 \sqrt{17} i$$$ 的所有第 $$$n$$$ 次方根($$$n = 2$$$),並顯示步驟。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\sqrt{32 + 4 \sqrt{17} i}$$$

解答

$$$32 + 4 \sqrt{17} i$$$ 的極座標形式為 $$$36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right)$$$(步驟請參見 極座標形式計算器)。

根據棣莫弗公式,複數 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ 的所有第 $$$n$$$ 次方根由 $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ 給出。

我們有 $$$r = 36$$$$$$\theta = \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}$$$$$$n = 2$$$

  • $$$k = 0$$$: $$$\sqrt{36} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 0}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 0}{2} \right)}\right) = 6 \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\right) = 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}$$$
  • $$$k = 1$$$: $$$\sqrt{36} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 1}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 1}{2} \right)}\right) = 6 \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} + \pi \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} + \pi \right)}\right) = - 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} - 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}$$$

答案

$$$\sqrt{32 + 4 \sqrt{17} i} = 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\approx 5.8309518948453 + 1.414213562373095 i$$$A

$$$\sqrt{32 + 4 \sqrt{17} i} = - 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} - 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\approx -5.8309518948453 - 1.414213562373095 i$$$A


Please try a new game Rotatly