$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]$$$ 的奇异值分解
相关计算器: 伪逆计算器
您的输入
求$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]$$$的奇异值分解。
解答
求该矩阵的转置:$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]^{T} = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & 0\\\frac{\sqrt{2}}{2} & 0\end{array}\right]$$$(步骤详见矩阵转置计算器)。
将矩阵与其转置相乘:$$$W = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & 0\\\frac{\sqrt{2}}{2} & 0\end{array}\right] = \left[\begin{array}{cc}1 & 0\\0 & 0\end{array}\right]$$$(步骤详见矩阵乘法计算器)。
现在,求$$$W$$$的特征值与特征向量(步骤参见特征值与特征向量计算器)。
特征值:$$$1$$$,特征向量:$$$\left[\begin{array}{c}1\\0\end{array}\right]$$$。
特征值:$$$0$$$,特征向量:$$$\left[\begin{array}{c}0\\1\end{array}\right]$$$。
求非零特征值 ($$$\sigma_{i}$$$) 的平方根:
$$$\sigma_{1} = 1$$$
矩阵 $$$\Sigma$$$ 是一个对角线上为 $$$\sigma_{i}$$$、其余元素为零的矩阵:$$$\Sigma = \left[\begin{array}{cc}1 & 0\\0 & 0\end{array}\right]$$$。
矩阵 $$$U$$$ 的列是归一化(单位)向量:$$$U = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]$$$(关于求单位向量的步骤,参见 单位向量计算器)。
现在,$$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]^{T}\cdot u_{i}$$$:
$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]^{T}\cdot u_{1} = \frac{1}{1}\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & 0\\\frac{\sqrt{2}}{2} & 0\end{array}\right]\cdot \left[\begin{array}{c}1\\0\end{array}\right] = \left[\begin{array}{c}\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{array}\right]$$$ (步骤详见 矩阵数乘计算器 和 矩阵乘法计算器).
由于非零$$$\sigma_{i}$$$已用尽且还需再取一个向量,可通过求以已找到向量为行的矩阵的零空间,得到一个正交于这些向量的向量:$$$\left[\begin{array}{c}-1\\1\end{array}\right]$$$(步骤参见零空间计算器)。
将向量单位化:它变为$$$\left[\begin{array}{c}- \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{array}\right]$$$(步骤详见单位向量计算器)。
因此,$$$V = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$$$。
矩阵$$$U$$$、$$$\Sigma$$$和$$$V$$$使得初始矩阵满足$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right] = U \Sigma V^T$$$。
答案
$$$U = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]$$$A
$$$\Sigma = \left[\begin{array}{cc}1 & 0\\0 & 0\end{array}\right]$$$A
$$$V = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\approx \left[\begin{array}{cc}0.707106781186548 & -0.707106781186548\\0.707106781186548 & 0.707106781186548\end{array}\right]$$$A