$$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$的QR分解
相关计算器: LU分解计算器
您的输入
求$$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$的QR分解。
解答
将由给定矩阵的列构成的向量组进行正交归一化:$$$\left\{\left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]\right\}$$$(步骤参见格拉姆-施密特计算器)。
矩阵$$$Q$$$的列是正交归一化的向量:$$$Q = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$。
求该矩阵的转置:$$$Q^{T} = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$(步骤详见矩阵转置计算器)。
最后,$$$R = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right] = \left[\begin{array}{c}- \frac{a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{2} e^{2 e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$(步骤详见矩阵乘法计算器)。
答案
$$$Q = \left[\begin{array}{c}\frac{i a g h m n r s e^{e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$A
$$$R = \left[\begin{array}{c}- \frac{a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{2} e^{2 e i n o r s^{2}}}{\left|{a g h m n r s}\right|}\end{array}\right]$$$A