函数 $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(t \right)}, \cos{\left(t \right)}, 2 \sqrt{2} t\right\rangle$$$ 的单位切向量

计算器将求出 $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(t \right)}, \cos{\left(t \right)}, 2 \sqrt{2} t\right\rangle$$$ 的单位切向量,并显示步骤。

相关计算器: 单位法向量计算器, 单位副法向量计算器

$$$\langle$$$ $$$\rangle$$$
以逗号分隔。
若不需要在特定点处的向量,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(t \right)}, \cos{\left(t \right)}, 2 \sqrt{2} t\right\rangle$$$的单位切向量。

解答

要得到单位切向量,我们需要对 $$$\mathbf{\vec{r}\left(t\right)}$$$(切向量)求导,然后将其归一化(求单位向量)。

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 2 \sqrt{2}\right\rangle$$$(步骤参见导数计算器)。

求单位向量:$$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\cos{\left(t \right)}}{3}, - \frac{\sin{\left(t \right)}}{3}, \frac{2 \sqrt{2}}{3}\right\rangle$$$(步骤详见 单位向量计算器)。

答案

单位切向量为 $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\cos{\left(t \right)}}{3}, - \frac{\sin{\left(t \right)}}{3}, \frac{2 \sqrt{2}}{3}\right\rangle$$$A


Please try a new game Rotatly