$$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$ 的主单位法向量

该计算器将求出 $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$ 的主单位法向量,并显示步骤。

相关计算器: 单位切向量计算器, 单位副法向量计算器

$$$\langle$$$ $$$\rangle$$$
以逗号分隔。
若不需要在特定点处的向量,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\mathbf{\vec{r}\left(t\right)} = \left\langle 7 t, t^{2}, t^{3}\right\rangle$$$的主单位法向量。

解答

为了找到主单位法向量,我们需要对单位切向量 $$$\mathbf{\vec{T}\left(t\right)}$$$ 求导,然后将其单位化(得到单位向量)。

求单位切向量:$$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$(步骤见单位切向量计算器)。

$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{14 t \left(9 t^{2} + 2\right)}{\left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}, \frac{2 \left(49 - 9 t^{4}\right)}{\left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}, \frac{6 t \left(2 t^{2} + 49\right)}{\left(9 t^{4} + 4 t^{2} + 49\right)^{\frac{3}{2}}}\right\rangle$$$(步骤参见导数计算器)。

求单位向量:$$$\mathbf{\vec{N}\left(t\right)} = \left\langle \frac{- 63 t^{3} - 14 t}{\sqrt{81 t^{8} + 4005 t^{6} + 2646 t^{4} + 21805 t^{2} + 2401}}, \frac{49 - 9 t^{4}}{\sqrt{81 t^{8} + 4005 t^{6} + 2646 t^{4} + 21805 t^{2} + 2401}}, \frac{6 t^{3} + 147 t}{\sqrt{81 t^{8} + 4005 t^{6} + 2646 t^{4} + 21805 t^{2} + 2401}}\right\rangle$$$(步骤详见 单位向量计算器)。

答案

主单位法向量为 $$$\mathbf{\vec{N}\left(t\right)} = \left\langle \frac{- 63 t^{3} - 14 t}{\sqrt{81 t^{8} + 4005 t^{6} + 2646 t^{4} + 21805 t^{2} + 2401}}, \frac{49 - 9 t^{4}}{\sqrt{81 t^{8} + 4005 t^{6} + 2646 t^{4} + 21805 t^{2} + 2401}}, \frac{6 t^{3} + 147 t}{\sqrt{81 t^{8} + 4005 t^{6} + 2646 t^{4} + 21805 t^{2} + 2401}}\right\rangle$$$A


Please try a new game Rotatly