卷曲计算器

计算器将找到给定矢量场的卷曲,并显示步骤。

相关计算器: 偏导数计算器, 交叉产品计算器, 矩阵行列式计算器

$$$\langle$$$
,
,
$$$\rangle$$$
$$$($$$
,
,
$$$)$$$
如果您在特定点不需要卷曲,请留空。

如果计算器没有计算出某些东西,或者您发现了错误,或者您有建议/反馈,请将其写在下面的评论中。

您的输入

计算$$$\text{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle$$$

解决方案

根据定义, $$$\text{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \nabla\times \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle$$$或等价的$$$\text{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\\cos{\left(x y \right)} & e^{x y z} & \sin{\left(x y \right)}\end{array}\right|$$$ ,其中$$$\times$$$cross product operator

因此, $$$\text{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left\langle \frac{\partial}{\partial y} \left(\sin{\left(x y \right)}\right) - \frac{\partial}{\partial z} \left(e^{x y z}\right), \frac{\partial}{\partial z} \left(\cos{\left(x y \right)}\right) - \frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right), \frac{\partial}{\partial x} \left(e^{x y z}\right) - \frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right)\right\rangle$$$

求偏导数:

$$$\frac{\partial}{\partial y} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}$$$ (有关步骤,请参阅 导数计算器)。

$$$\frac{\partial}{\partial z} \left(e^{x y z}\right) = x y e^{x y z}$$$ (有关步骤,请参阅 导数计算器)。

$$$\frac{\partial}{\partial z} \left(\cos{\left(x y \right)}\right) = 0$$$ (有关步骤,请参阅 导数计算器)。

$$$\frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$$$ (有关步骤,请参阅 导数计算器)。

$$$\frac{\partial}{\partial x} \left(e^{x y z}\right) = y z e^{x y z}$$$ (有关步骤,请参阅 导数计算器)。

$$$\frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$$$ (有关步骤,请参阅 导数计算器)。

现在,只需插入找到的偏导数即可获得 curl: $$$\text{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left\langle x \left(- y e^{x y z} + \cos{\left(x y \right)}\right), - y \cos{\left(x y \right)}, x \sin{\left(x y \right)} + y z e^{x y z}\right\rangle$$$

回答

$$$\text{curl} \left\langle \cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right\rangle = \left\langle x \left(- y e^{x y z} + \cos{\left(x y \right)}\right), - y \cos{\left(x y \right)}, x \sin{\left(x y \right)} + y z e^{x y z}\right\rangle$$$