函数的辛普森规则计算器

解决方案

$\int\limits_{a}^{b} f{\left(x \right)}\, dx\approx \frac{\Delta x}{3} \left(f{\left(x_{0} \right)} + 4 f{\left(x_{1} \right)} + 2 f{\left(x_{2} \right)} + 4 f{\left(x_{3} \right)} + 2 f{\left(x_{4} \right)}+\dots+4 f{\left(x_{n-3} \right)} + 2 f{\left(x_{n-2} \right)} + 4 f{\left(x_{n-1} \right)} + f{\left(x_{n} \right)}\right)$

$f{\left(x_{0} \right)} = f{\left(0 \right)} = \frac{7^{\frac{2}{3}}}{7}\approx 0.52275795857471$

$4 f{\left(x_{1} \right)} = 4 f{\left(\frac{1}{4} \right)} = \frac{32 \sqrt[3]{2} \cdot 7169^{\frac{2}{3}}}{7169}\approx 2.09093460413808$

$2 f{\left(x_{2} \right)} = 2 f{\left(\frac{1}{2} \right)} = \frac{4 \sqrt[3]{15} \cdot 2^{\frac{2}{3}}}{15}\approx 1.043964704311697$

$4 f{\left(x_{3} \right)} = 4 f{\left(\frac{3}{4} \right)} = \frac{32 \sqrt[3]{2} \cdot 7411^{\frac{2}{3}}}{7411}\approx 2.067923042238355$

$f{\left(x_{4} \right)} = f{\left(1 \right)} = \frac{1}{2} = 0.5$

回答

$\int\limits_{0}^{1} \frac{1}{\sqrt[3]{x^{5} + 7}}\, dx\approx 0.518798359105237$A