$$$16 r = \cos{\left(3 \theta \right)}$$$ 转换为直角坐标形式

该计算器将把极坐标方程 $$$16 r = \cos{\left(3 \theta \right)}$$$ 转换为直角(笛卡尔)坐标形式,并显示步骤。

相关计算器: 极坐标/直角坐标计算器

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$16 r = \cos{\left(3 \theta \right)}$$$ 转换为直角坐标。

解答

应用公式$$$\cos{\left(3 \alpha \right)} = \cos^{3}{\left(\alpha \right)} - 3 \sin^{2}{\left(\alpha \right)} \cos{\left(\alpha \right)}$$$,令$$$\alpha = \theta$$$$$$16 r = - 3 \sin^{2}{\left(\theta \right)} \cos{\left(\theta \right)} + \cos^{3}{\left(\theta \right)}$$$

$$$x = r \cos{\left(\theta \right)}$$$$$$y = r \sin{\left(\theta \right)}$$$可得$$$\cos{\left(\theta \right)} = \frac{x}{r}$$$$$$\sin{\left(\theta \right)} = \frac{y}{r}$$$$$$\tan{\left(\theta \right)} = \frac{y}{x}$$$$$$\cot{\left(\theta \right)} = \frac{x}{y}$$$

输入变为$$$16 r = \frac{x^{3}}{r^{3}} - \frac{3 x y^{2}}{r^{3}}$$$

化简:输入现在呈 $$$16 r^{4} - x^{3} + 3 x y^{2} = 0$$$ 的形式。

在直角坐标系中,$$$r = \sqrt{x^{2} + y^{2}}$$$$$$\theta = \operatorname{atan}{\left(\frac{y}{x} \right)}$$$

因此,输入可以改写为$$$- x^{3} + 3 x y^{2} + 16 \left(x^{2} + y^{2}\right)^{2} = 0$$$

答案

$$$16 r = \cos{\left(3 \theta \right)}$$$A 在直角坐标系中为 $$$- x^{3} + 3 x y^{2} + 16 \left(x^{2} + y^{2}\right)^{2} = 0$$$A


Please try a new game Rotatly