$$$x - \ln^{2}\left(x\right)$$$ 的积分
您的输入
求$$$\int \left(x - \ln^{2}\left(x\right)\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(x - \ln{\left(x \right)}^{2}\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{\ln{\left(x \right)}^{2} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- \int{\ln{\left(x \right)}^{2} d x} + {\color{red}{\int{x d x}}}=- \int{\ln{\left(x \right)}^{2} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\ln{\left(x \right)}^{2} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
对于积分$$$\int{\ln{\left(x \right)}^{2} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ 和 $$$\operatorname{dv}=dx$$$。
则 $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d x}=x$$$ (步骤见 »)。
该积分可以改写为
$$\frac{x^{2}}{2} - {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}=\frac{x^{2}}{2} - {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}=\frac{x^{2}}{2} - {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = \frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}$$
对于积分$$$\int{\ln{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\ln{\left(x \right)}$$$ 和 $$$\operatorname{dv}=dx$$$。
则 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d x}=x$$$ (步骤见 »)。
因此,
$$\frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + 2 {\color{red}{\int{\ln{\left(x \right)} d x}}}=\frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + 2 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=\frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + 2 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + 2 x \ln{\left(x \right)} - 2 {\color{red}{\int{1 d x}}} = \frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + 2 x \ln{\left(x \right)} - 2 {\color{red}{x}}$$
因此,
$$\int{\left(x - \ln{\left(x \right)}^{2}\right)d x} = \frac{x^{2}}{2} - x \ln{\left(x \right)}^{2} + 2 x \ln{\left(x \right)} - 2 x$$
化简:
$$\int{\left(x - \ln{\left(x \right)}^{2}\right)d x} = \frac{x \left(x - 2 \ln{\left(x \right)}^{2} + 4 \ln{\left(x \right)} - 4\right)}{2}$$
加上积分常数:
$$\int{\left(x - \ln{\left(x \right)}^{2}\right)d x} = \frac{x \left(x - 2 \ln{\left(x \right)}^{2} + 4 \ln{\left(x \right)} - 4\right)}{2}+C$$
答案
$$$\int \left(x - \ln^{2}\left(x\right)\right)\, dx = \frac{x \left(x - 2 \ln^{2}\left(x\right) + 4 \ln\left(x\right) - 4\right)}{2} + C$$$A