$$$- x \cot{\left(x \right)} + x$$$ 的积分

该计算器将求出$$$- x \cot{\left(x \right)} + x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- x \cot{\left(x \right)} + x\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(- x \cot{\left(x \right)} + x\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{x \cot{\left(x \right)} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$- \int{x \cot{\left(x \right)} d x} + {\color{red}{\int{x d x}}}=- \int{x \cot{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{x \cot{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

对于积分$$$\int{x \cot{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\cot{\left(x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\cot{\left(x \right)} d x}=\ln{\left(\sin{\left(x \right)} \right)}$$$ (步骤见 »)。

所以,

$$\frac{x^{2}}{2} - {\color{red}{\int{x \cot{\left(x \right)} d x}}}=\frac{x^{2}}{2} - {\color{red}{\left(x \cdot \ln{\left(\sin{\left(x \right)} \right)}-\int{\ln{\left(\sin{\left(x \right)} \right)} \cdot 1 d x}\right)}}=\frac{x^{2}}{2} - {\color{red}{\left(x \ln{\left(\sin{\left(x \right)} \right)} - \int{\ln{\left(\sin{\left(x \right)} \right)} d x}\right)}}$$

该积分没有闭式表达式:

$$\frac{x^{2}}{2} - x \ln{\left(\sin{\left(x \right)} \right)} + {\color{red}{\int{\ln{\left(\sin{\left(x \right)} \right)} d x}}} = \frac{x^{2}}{2} - x \ln{\left(\sin{\left(x \right)} \right)} + {\color{red}{\left(\frac{i x^{2}}{2} - x \ln{\left(1 - e^{2 i x} \right)} + x \ln{\left(\sin{\left(x \right)} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}\right)}}$$

因此,

$$\int{\left(- x \cot{\left(x \right)} + x\right)d x} = \frac{x^{2}}{2} + \frac{i x^{2}}{2} - x \ln{\left(1 - e^{2 i x} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}$$

化简:

$$\int{\left(- x \cot{\left(x \right)} + x\right)d x} = \frac{x^{2} \left(1 + i\right)}{2} - x \ln{\left(1 - e^{2 i x} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}$$

加上积分常数:

$$\int{\left(- x \cot{\left(x \right)} + x\right)d x} = \frac{x^{2} \left(1 + i\right)}{2} - x \ln{\left(1 - e^{2 i x} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}+C$$

答案

$$$\int \left(- x \cot{\left(x \right)} + x\right)\, dx = \left(\frac{x^{2} \left(1 + i\right)}{2} - x \ln\left(1 - e^{2 i x}\right) + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}\right) + C$$$A


Please try a new game Rotatly