$$$\frac{x^{3}}{18}$$$ 的积分
您的输入
求$$$\int \frac{x^{3}}{18}\, dx$$$。
解答
对 $$$c=\frac{1}{18}$$$ 和 $$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{x^{3}}{18} d x}}} = {\color{red}{\left(\frac{\int{x^{3} d x}}{18}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$:
$$\frac{{\color{red}{\int{x^{3} d x}}}}{18}=\frac{{\color{red}{\frac{x^{1 + 3}}{1 + 3}}}}{18}=\frac{{\color{red}{\left(\frac{x^{4}}{4}\right)}}}{18}$$
因此,
$$\int{\frac{x^{3}}{18} d x} = \frac{x^{4}}{72}$$
加上积分常数:
$$\int{\frac{x^{3}}{18} d x} = \frac{x^{4}}{72}+C$$
答案
$$$\int \frac{x^{3}}{18}\, dx = \frac{x^{4}}{72} + C$$$A
Please try a new game Rotatly