$$$t \sqrt{9 t^{2} + 4}$$$ 的积分
您的输入
求$$$\int t \sqrt{9 t^{2} + 4}\, dt$$$。
解答
设$$$u=9 t^{2} + 4$$$。
则$$$du=\left(9 t^{2} + 4\right)^{\prime }dt = 18 t dt$$$ (步骤见»),并有$$$t dt = \frac{du}{18}$$$。
因此,
$${\color{red}{\int{t \sqrt{9 t^{2} + 4} d t}}} = {\color{red}{\int{\frac{\sqrt{u}}{18} d u}}}$$
对 $$$c=\frac{1}{18}$$$ 和 $$$f{\left(u \right)} = \sqrt{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sqrt{u}}{18} d u}}} = {\color{red}{\left(\frac{\int{\sqrt{u} d u}}{18}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{1}{2}$$$:
$$\frac{{\color{red}{\int{\sqrt{u} d u}}}}{18}=\frac{{\color{red}{\int{u^{\frac{1}{2}} d u}}}}{18}=\frac{{\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{18}=\frac{{\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}}{18}$$
回忆一下 $$$u=9 t^{2} + 4$$$:
$$\frac{{\color{red}{u}}^{\frac{3}{2}}}{27} = \frac{{\color{red}{\left(9 t^{2} + 4\right)}}^{\frac{3}{2}}}{27}$$
因此,
$$\int{t \sqrt{9 t^{2} + 4} d t} = \frac{\left(9 t^{2} + 4\right)^{\frac{3}{2}}}{27}$$
加上积分常数:
$$\int{t \sqrt{9 t^{2} + 4} d t} = \frac{\left(9 t^{2} + 4\right)^{\frac{3}{2}}}{27}+C$$
答案
$$$\int t \sqrt{9 t^{2} + 4}\, dt = \frac{\left(9 t^{2} + 4\right)^{\frac{3}{2}}}{27} + C$$$A