$$$\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}$$$ 的积分

该计算器将求出$$$\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)\, dy$$$

解答

逐项积分:

$${\color{red}{\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y}}} = {\color{red}{\left(\int{\frac{1}{2 \sqrt{y}} d y} + \int{\frac{\sqrt{y}}{2} d y}\right)}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(y \right)} = \sqrt{y}$$$ 应用常数倍法则 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$

$$\int{\frac{1}{2 \sqrt{y}} d y} + {\color{red}{\int{\frac{\sqrt{y}}{2} d y}}} = \int{\frac{1}{2 \sqrt{y}} d y} + {\color{red}{\left(\frac{\int{\sqrt{y} d y}}{2}\right)}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{1}{2}$$$

$$\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\int{\sqrt{y} d y}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\int{y^{\frac{1}{2}} d y}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\frac{y^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\left(\frac{2 y^{\frac{3}{2}}}{3}\right)}}}{2}$$

$$$c=\frac{1}{2}$$$$$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$ 应用常数倍法则 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$

$$\frac{y^{\frac{3}{2}}}{3} + {\color{red}{\int{\frac{1}{2 \sqrt{y}} d y}}} = \frac{y^{\frac{3}{2}}}{3} + {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{y}} d y}}{2}\right)}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$

$$\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\int{\frac{1}{\sqrt{y}} d y}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\int{y^{- \frac{1}{2}} d y}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\left(2 y^{\frac{1}{2}}\right)}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\left(2 \sqrt{y}\right)}}}{2}$$

因此,

$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{y^{\frac{3}{2}}}{3} + \sqrt{y}$$

化简:

$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{\sqrt{y} \left(y + 3\right)}{3}$$

加上积分常数:

$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{\sqrt{y} \left(y + 3\right)}{3}+C$$

答案

$$$\int \left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)\, dy = \frac{\sqrt{y} \left(y + 3\right)}{3} + C$$$A


Please try a new game Rotatly