$$$\sqrt{x - 2} + 1$$$ 的积分

该计算器将求出$$$\sqrt{x - 2} + 1$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(\sqrt{x - 2} + 1\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(\sqrt{x - 2} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\sqrt{x - 2} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$\int{\sqrt{x - 2} d x} + {\color{red}{\int{1 d x}}} = \int{\sqrt{x - 2} d x} + {\color{red}{x}}$$

$$$u=x - 2$$$

$$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

积分变为

$$x + {\color{red}{\int{\sqrt{x - 2} d x}}} = x + {\color{red}{\int{\sqrt{u} d u}}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{1}{2}$$$

$$x + {\color{red}{\int{\sqrt{u} d u}}}=x + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=x + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=x + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

回忆一下 $$$u=x - 2$$$:

$$x + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = x + \frac{2 {\color{red}{\left(x - 2\right)}}^{\frac{3}{2}}}{3}$$

因此,

$$\int{\left(\sqrt{x - 2} + 1\right)d x} = x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}$$

加上积分常数:

$$\int{\left(\sqrt{x - 2} + 1\right)d x} = x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}+C$$

答案

$$$\int \left(\sqrt{x - 2} + 1\right)\, dx = \left(x + \frac{2 \left(x - 2\right)^{\frac{3}{2}}}{3}\right) + C$$$A


Please try a new game Rotatly