$$$\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}$$$ 的积分
您的输入
求$$$\int \frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}\, dx$$$。
解答
设$$$u=1 - \frac{1}{x}$$$。
则$$$du=\left(1 - \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$ (步骤见»),并有$$$\frac{dx}{x^{2}} = du$$$。
该积分可以改写为
$${\color{red}{\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{1}{2}$$$:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
回忆一下 $$$u=1 - \frac{1}{x}$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\left(1 - \frac{1}{x}\right)}}^{\frac{3}{2}}}{3}$$
因此,
$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(1 - \frac{1}{x}\right)^{\frac{3}{2}}}{3}$$
化简:
$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3}$$
加上积分常数:
$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3}+C$$
答案
$$$\int \frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}\, dx = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3} + C$$$A