$$$\sin^{3}{\left(2 x \right)}$$$ 的积分
您的输入
求$$$\int \sin^{3}{\left(2 x \right)}\, dx$$$。
解答
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{\sin^{3}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{3}{\left(u \right)}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \sin^{3}{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sin^{3}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin^{3}{\left(u \right)} d u}}{2}\right)}}$$
提出一个正弦,并将其余部分用余弦表示,使用公式$$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$,其中$$$\alpha= u $$$:
$$\frac{{\color{red}{\int{\sin^{3}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(1 - \cos^{2}{\left(u \right)}\right) \sin{\left(u \right)} d u}}}}{2}$$
设$$$v=\cos{\left(u \right)}$$$。
则$$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (步骤见»),并有$$$\sin{\left(u \right)} du = - dv$$$。
因此,
$$\frac{{\color{red}{\int{\left(1 - \cos^{2}{\left(u \right)}\right) \sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(v^{2} - 1\right)d v}}}}{2}$$
对 $$$c=-1$$$ 和 $$$f{\left(v \right)} = 1 - v^{2}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$\frac{{\color{red}{\int{\left(v^{2} - 1\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\left(1 - v^{2}\right)d v}\right)}}}{2}$$
逐项积分:
$$- \frac{{\color{red}{\int{\left(1 - v^{2}\right)d v}}}}{2} = - \frac{{\color{red}{\left(\int{1 d v} - \int{v^{2} d v}\right)}}}{2}$$
应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$:
$$\frac{\int{v^{2} d v}}{2} - \frac{{\color{red}{\int{1 d v}}}}{2} = \frac{\int{v^{2} d v}}{2} - \frac{{\color{red}{v}}}{2}$$
应用幂法则 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$- \frac{v}{2} + \frac{{\color{red}{\int{v^{2} d v}}}}{2}=- \frac{v}{2} + \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=- \frac{v}{2} + \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$
回忆一下 $$$v=\cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{v}}}{2} + \frac{{\color{red}{v}}^{3}}{6} = - \frac{{\color{red}{\cos{\left(u \right)}}}}{2} + \frac{{\color{red}{\cos{\left(u \right)}}}^{3}}{6}$$
回忆一下 $$$u=2 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} + \frac{\cos^{3}{\left({\color{red}{u}} \right)}}{6} = - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2} + \frac{\cos^{3}{\left({\color{red}{\left(2 x\right)}} \right)}}{6}$$
因此,
$$\int{\sin^{3}{\left(2 x \right)} d x} = \frac{\cos^{3}{\left(2 x \right)}}{6} - \frac{\cos{\left(2 x \right)}}{2}$$
化简:
$$\int{\sin^{3}{\left(2 x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{6}$$
加上积分常数:
$$\int{\sin^{3}{\left(2 x \right)} d x} = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{6}+C$$
答案
$$$\int \sin^{3}{\left(2 x \right)}\, dx = \frac{\left(\cos^{2}{\left(2 x \right)} - 3\right) \cos{\left(2 x \right)}}{6} + C$$$A