$$$\sin{\left(n x \right)}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \sin{\left(n x \right)}\, dx$$$。
解答
设$$$u=n x$$$。
则$$$du=\left(n x\right)^{\prime }dx = n dx$$$ (步骤见»),并有$$$dx = \frac{du}{n}$$$。
积分变为
$${\color{red}{\int{\sin{\left(n x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}$$
对 $$$c=\frac{1}{n}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}} = {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n}$$
回忆一下 $$$u=n x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{n} = - \frac{\cos{\left({\color{red}{n x}} \right)}}{n}$$
因此,
$$\int{\sin{\left(n x \right)} d x} = - \frac{\cos{\left(n x \right)}}{n}$$
加上积分常数:
$$\int{\sin{\left(n x \right)} d x} = - \frac{\cos{\left(n x \right)}}{n}+C$$
答案
$$$\int \sin{\left(n x \right)}\, dx = - \frac{\cos{\left(n x \right)}}{n} + C$$$A