$$$\sin{\left(n x \right)}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\sin{\left(n x \right)}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sin{\left(n x \right)}\, dx$$$

解答

$$$u=n x$$$

$$$du=\left(n x\right)^{\prime }dx = n dx$$$ (步骤见»),并有$$$dx = \frac{du}{n}$$$

积分变为

$${\color{red}{\int{\sin{\left(n x \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}}$$

$$$c=\frac{1}{n}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{\sin{\left(u \right)}}{n} d u}}} = {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{n}}}$$

正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{n} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{n}$$

回忆一下 $$$u=n x$$$:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{n} = - \frac{\cos{\left({\color{red}{n x}} \right)}}{n}$$

因此,

$$\int{\sin{\left(n x \right)} d x} = - \frac{\cos{\left(n x \right)}}{n}$$

加上积分常数:

$$\int{\sin{\left(n x \right)} d x} = - \frac{\cos{\left(n x \right)}}{n}+C$$

答案

$$$\int \sin{\left(n x \right)}\, dx = - \frac{\cos{\left(n x \right)}}{n} + C$$$A


Please try a new game Rotatly