$$$\pi \sin{\left(x \right)}$$$ 的积分

该计算器将求出$$$\pi \sin{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \pi \sin{\left(x \right)}\, dx$$$

解答

$$$c=\pi$$$$$$f{\left(x \right)} = \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\pi \sin{\left(x \right)} d x}}} = {\color{red}{\pi \int{\sin{\left(x \right)} d x}}}$$

正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\pi {\color{red}{\int{\sin{\left(x \right)} d x}}} = \pi {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

因此,

$$\int{\pi \sin{\left(x \right)} d x} = - \pi \cos{\left(x \right)}$$

加上积分常数:

$$\int{\pi \sin{\left(x \right)} d x} = - \pi \cos{\left(x \right)}+C$$

答案

$$$\int \pi \sin{\left(x \right)}\, dx = - \pi \cos{\left(x \right)} + C$$$A


Please try a new game Rotatly