$$$\pi \left(- x^{2} + 2 x\right)$$$ 的积分

该计算器将求出$$$\pi \left(- x^{2} + 2 x\right)$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \pi \left(- x^{2} + 2 x\right)\, dx$$$

解答

化简被积函数:

$${\color{red}{\int{\pi \left(- x^{2} + 2 x\right) d x}}} = {\color{red}{\int{\pi x \left(2 - x\right) d x}}}$$

$$$c=\pi$$$$$$f{\left(x \right)} = x \left(2 - x\right)$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\pi x \left(2 - x\right) d x}}} = {\color{red}{\pi \int{x \left(2 - x\right) d x}}}$$

Expand the expression:

$$\pi {\color{red}{\int{x \left(2 - x\right) d x}}} = \pi {\color{red}{\int{\left(- x^{2} + 2 x\right)d x}}}$$

逐项积分:

$$\pi {\color{red}{\int{\left(- x^{2} + 2 x\right)d x}}} = \pi {\color{red}{\left(\int{2 x d x} - \int{x^{2} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$\pi \left(\int{2 x d x} - {\color{red}{\int{x^{2} d x}}}\right)=\pi \left(\int{2 x d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)=\pi \left(\int{2 x d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)$$

$$$c=2$$$$$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\pi \left(- \frac{x^{3}}{3} + {\color{red}{\int{2 x d x}}}\right) = \pi \left(- \frac{x^{3}}{3} + {\color{red}{\left(2 \int{x d x}\right)}}\right)$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\pi \left(- \frac{x^{3}}{3} + 2 {\color{red}{\int{x d x}}}\right)=\pi \left(- \frac{x^{3}}{3} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=\pi \left(- \frac{x^{3}}{3} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

因此,

$$\int{\pi \left(- x^{2} + 2 x\right) d x} = \pi \left(- \frac{x^{3}}{3} + x^{2}\right)$$

化简:

$$\int{\pi \left(- x^{2} + 2 x\right) d x} = \frac{\pi x^{2} \left(3 - x\right)}{3}$$

加上积分常数:

$$\int{\pi \left(- x^{2} + 2 x\right) d x} = \frac{\pi x^{2} \left(3 - x\right)}{3}+C$$

答案

$$$\int \pi \left(- x^{2} + 2 x\right)\, dx = \frac{\pi x^{2} \left(3 - x\right)}{3} + C$$$A


Please try a new game Rotatly