$$$\ln\left(t\right)$$$ 的积分

该计算器将求出$$$\ln\left(t\right)$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \ln\left(t\right)\, dt$$$

解答

对于积分$$$\int{\ln{\left(t \right)} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(t \right)}$$$$$$\operatorname{dv}=dt$$$

$$$\operatorname{du}=\left(\ln{\left(t \right)}\right)^{\prime }dt=\frac{dt}{t}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d t}=t$$$ (步骤见 »)。

所以,

$${\color{red}{\int{\ln{\left(t \right)} d t}}}={\color{red}{\left(\ln{\left(t \right)} \cdot t-\int{t \cdot \frac{1}{t} d t}\right)}}={\color{red}{\left(t \ln{\left(t \right)} - \int{1 d t}\right)}}$$

应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=1$$$

$$t \ln{\left(t \right)} - {\color{red}{\int{1 d t}}} = t \ln{\left(t \right)} - {\color{red}{t}}$$

因此,

$$\int{\ln{\left(t \right)} d t} = t \ln{\left(t \right)} - t$$

化简:

$$\int{\ln{\left(t \right)} d t} = t \left(\ln{\left(t \right)} - 1\right)$$

加上积分常数:

$$\int{\ln{\left(t \right)} d t} = t \left(\ln{\left(t \right)} - 1\right)+C$$

答案

$$$\int \ln\left(t\right)\, dt = t \left(\ln\left(t\right) - 1\right) + C$$$A


Please try a new game Rotatly