$$$\ln\left(5 x\right)$$$ 的积分
您的输入
求$$$\int \ln\left(5 x\right)\, dx$$$。
解答
设$$$u=5 x$$$。
则$$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (步骤见»),并有$$$dx = \frac{du}{5}$$$。
因此,
$${\color{red}{\int{\ln{\left(5 x \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{5} d u}}}$$
对 $$$c=\frac{1}{5}$$$ 和 $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{5} d u}}} = {\color{red}{\left(\frac{\int{\ln{\left(u \right)} d u}}{5}\right)}}$$
对于积分$$$\int{\ln{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$。
设 $$$\operatorname{g}=\ln{\left(u \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
因此,
$$\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{5}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{5}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{5}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$\frac{u \ln{\left(u \right)}}{5} - \frac{{\color{red}{\int{1 d u}}}}{5} = \frac{u \ln{\left(u \right)}}{5} - \frac{{\color{red}{u}}}{5}$$
回忆一下 $$$u=5 x$$$:
$$- \frac{{\color{red}{u}}}{5} + \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{5} = - \frac{{\color{red}{\left(5 x\right)}}}{5} + \frac{{\color{red}{\left(5 x\right)}} \ln{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
因此,
$$\int{\ln{\left(5 x \right)} d x} = x \ln{\left(5 x \right)} - x$$
化简:
$$\int{\ln{\left(5 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(5 \right)}\right)$$
加上积分常数:
$$\int{\ln{\left(5 x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \ln{\left(5 \right)}\right)+C$$
答案
$$$\int \ln\left(5 x\right)\, dx = x \left(\ln\left(x\right) - 1 + \ln\left(5\right)\right) + C$$$A