$$$i x^{2} e^{3}$$$ 的积分
您的输入
求$$$\int i x^{2} e^{3}\, dx$$$。
解答
对 $$$c=i e^{3}$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{i x^{2} e^{3} d x}}} = {\color{red}{i e^{3} \int{x^{2} d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$i e^{3} {\color{red}{\int{x^{2} d x}}}=i e^{3} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=i e^{3} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{i x^{2} e^{3} d x} = \frac{i x^{3} e^{3}}{3}$$
加上积分常数:
$$\int{i x^{2} e^{3} d x} = \frac{i x^{3} e^{3}}{3}+C$$
答案
$$$\int i x^{2} e^{3}\, dx = \frac{i x^{3} e^{3}}{3} + C$$$A
Please try a new game Rotatly