$$$\frac{\sqrt{x y}}{x^{2} y^{2}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{\sqrt{x y}}{x^{2} y^{2}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sqrt{x y}}{x^{2} y^{2}}\, dx$$$

解答

输入已重写为:$$$\int{\frac{\sqrt{x y}}{x^{2} y^{2}} d x}=\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x}$$$

$$$c=\frac{1}{y^{\frac{3}{2}}}$$$$$$f{\left(x \right)} = \frac{1}{x^{\frac{3}{2}}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{\frac{3}{2}}} d x}}{y^{\frac{3}{2}}}}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{3}{2}$$$

$$\frac{{\color{red}{\int{\frac{1}{x^{\frac{3}{2}}} d x}}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\int{x^{- \frac{3}{2}} d x}}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\left(- 2 x^{- \frac{1}{2}}\right)}}}{y^{\frac{3}{2}}}=\frac{{\color{red}{\left(- \frac{2}{\sqrt{x}}\right)}}}{y^{\frac{3}{2}}}$$

因此,

$$\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x} = - \frac{2}{\sqrt{x} y^{\frac{3}{2}}}$$

加上积分常数:

$$\int{\frac{1}{x^{\frac{3}{2}} y^{\frac{3}{2}}} d x} = - \frac{2}{\sqrt{x} y^{\frac{3}{2}}}+C$$

答案

$$$\int \frac{\sqrt{x y}}{x^{2} y^{2}}\, dx = - \frac{2}{\sqrt{x} y^{\frac{3}{2}}} + C$$$A


Please try a new game Rotatly