$$$e^{x + 2}$$$ 的积分
您的输入
求$$$\int e^{x + 2}\, dx$$$。
解答
设$$$u=x + 2$$$。
则$$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$${\color{red}{\int{e^{x + 2} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
回忆一下 $$$u=x + 2$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\left(x + 2\right)}}}$$
因此,
$$\int{e^{x + 2} d x} = e^{x + 2}$$
加上积分常数:
$$\int{e^{x + 2} d x} = e^{x + 2}+C$$
答案
$$$\int e^{x + 2}\, dx = e^{x + 2} + C$$$A
Please try a new game Rotatly