$$$e x \cos{\left(x \right)}$$$ 的积分
您的输入
求$$$\int e x \cos{\left(x \right)}\, dx$$$。
解答
对 $$$c=e$$$ 和 $$$f{\left(x \right)} = x \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{e x \cos{\left(x \right)} d x}}} = {\color{red}{e \int{x \cos{\left(x \right)} d x}}}$$
对于积分$$$\int{x \cos{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=x$$$ 和 $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$。
则 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (步骤见 »)。
所以,
$$e {\color{red}{\int{x \cos{\left(x \right)} d x}}}=e {\color{red}{\left(x \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 1 d x}\right)}}=e {\color{red}{\left(x \sin{\left(x \right)} - \int{\sin{\left(x \right)} d x}\right)}}$$
正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$e \left(x \sin{\left(x \right)} - {\color{red}{\int{\sin{\left(x \right)} d x}}}\right) = e \left(x \sin{\left(x \right)} - {\color{red}{\left(- \cos{\left(x \right)}\right)}}\right)$$
因此,
$$\int{e x \cos{\left(x \right)} d x} = e \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
加上积分常数:
$$\int{e x \cos{\left(x \right)} d x} = e \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right)+C$$
答案
$$$\int e x \cos{\left(x \right)}\, dx = e \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right) + C$$$A