$$$\frac{\sqrt{3} \sin{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{\sqrt{3} \sin{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$。
解答
对 $$$c=\sqrt{3}$$$ 和 $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\sqrt{3} \sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\sqrt{3} \int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$
设$$$u=\cos{\left(x \right)}$$$。
则$$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步骤见»),并有$$$\sin{\left(x \right)} dx = - du$$$。
所以,
$$\sqrt{3} {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = \sqrt{3} {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\sqrt{3} {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = \sqrt{3} {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}} = - \sqrt{3} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=\cos{\left(x \right)}$$$:
$$- \sqrt{3} \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \sqrt{3} \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}$$
因此,
$$\int{\frac{\sqrt{3} \sin{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \sqrt{3} \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$
加上积分常数:
$$\int{\frac{\sqrt{3} \sin{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \sqrt{3} \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C$$
答案
$$$\int \frac{\sqrt{3} \sin{\left(x \right)}}{\cos{\left(x \right)}}\, dx = - \sqrt{3} \ln\left(\left|{\cos{\left(x \right)}}\right|\right) + C$$$A